MATH 135 Winter 2017: Assignment 9 Due at 8:25 a.m. on Wednesday, March 22, 2017
It is important that you read the assignment submission instructions and suggestions available on LEARN.

1. Shade the region of the complex plane defined by $\{2 z-1 \in \mathbb{C}:|\bar{z}-3| \leq 2\}$. Justify your answer. March 20 at 1 pm : Written in a more standard way, the set above is

$$
\{2 z-1: z \in \mathbb{C} \text { and }|\bar{z}-3| \leq 2\}
$$

2. Let $z_{1}, z_{2} \in \mathbb{C}$ and $r \in \mathbb{R}$. Prove the following identity.
$\left|z_{1}\right|^{2} \cdot\left[(1-r) \cdot\left|z_{1}-z_{2}\right|\right]+\left|z_{2}\right|^{2} \cdot\left(r \cdot\left|z_{1}-z_{2}\right|\right)=\left|z_{1}-z_{2}\right|\left(\left|(1-r) z_{1}+r z_{2}\right|^{2}+r \cdot(1-r) \cdot\left|z_{1}-z_{2}\right|^{2}\right)$.
(When $0 \leq r \leq 1$, this is Stewart's Theorem which you may have seen in the first or second lecture!)
3. Suppose $n \in \mathbb{N}$ and $z \in \mathbb{C}$ with $|z|=1$ and $z^{2 n} \neq-1$. Prove that $\frac{z^{n}}{1+z^{2 n}} \in \mathbb{R}$.
4. Prove there exists $m \in \mathbb{R}$ such that the equation $2 z^{2}-(3-3 i) z-(m-9 i)=0$ has a real root.
5. Let $z=\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}$. Express z^{26} in standard form. Show your work.
6. Use De Moivre's Theorem $(D M T)$ to prove $\cos (5 \theta)=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta$ for all $\theta \in \mathbb{R}$. You may look up and apply the Binomial Theorem to simplify an expression of the form $(x+y)^{5}$ where x and y are complex numbers.
7. Let z be a nonzero complex number satisfying $z+z^{-1}=2 \cos \left(\frac{\pi}{15}\right)$. Determine the value of $z^{45}+z^{-45}$. Give an exact answer. Show your work.
